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ABSTRACT

New methods to center the initial ensemble perturbations on the analysis are introduced and compared with
the commonly used centering method of positive–negative paired perturbations. In the new method, one linearly
dependent perturbation is added to a set of linearly independent initial perturbations to ensure that the sum of
the new initial perturbations equals zero; the covariance calculated from the new initial perturbations is equal
to the analysis error covariance estimated by the independent initial perturbations, and all of the new initial
perturbations are equally likely. The new method is illustrated by applying it to the ensemble transform Kalman
filter (ETKF) ensemble forecast scheme, and the resulting ensemble is called the spherical simplex ETKF
ensemble. It is shown from a multidimensional Taylor expansion that the symmetric positive–negative paired
centering would yield a more accurate forecast ensemble mean and covariance than the spherical simplex centering
if the ensemble were large enough to span all initial uncertain directions and thus the analysis error covariance
was modeled precisely. However, when the number of uncertain directions is larger than the ensemble size, the
spherical simplex centering has the advantage of allowing almost twice as many uncertain directions to be
spanned as the symmetric positive–negative paired centering. The performances of the spherical simplex ETKF
and symmetric positive–negative paired ETKF ensembles are compared by using the Community Climate Model
Version 3 (CCM3). Each ensemble contains 1 control forecast and 16 perturbed forecasts. The NCEP–NCAR
reanalysis data for the boreal summer in 2000 are used for the initialization of the control forecast and the
verifications of the ensemble forecasts. The accuracy of the ensemble means, the accuracy of predictions of
forecast error variance, and the ability of the ETKF ensembles to resolve inhomogeneities in the observation
distribution were all tested. In all of these test categories, the spherical simplex ETKF ensemble was found to
be superior to the symmetric positive–negative paired ETKF ensemble. The computational expense for generating
spherical simplex ETKF initial perturbations is about as small as that for the symmetric positive–negative paired
ETKF. Also shown is that the seemingly straightforward centering method, in which centered perturbations are
obtained by subtracting the average of the perturbations from each individual perturbation, is unsatisfactory
because the covariance estimated by the uncentered perturbations is not necessarily conserved after centering.

1. Introduction

The ensemble transform Kalman filter (ETKF) en-
semble generation technique introduced in Wang and
Bishop (2003) did not give an explicit method whereby
the initial ensemble perturbations could be centered
about the best available estimate of the true state, that
is, the analysis. This is undesirable because, ideally, one
would like the ensemble mean to always be equal to
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the minimum error variance estimate of the true state.
Our primary aim in this paper is to compare the effect
of differing ensemble centering procedures on the per-
formance of the ETKF ensemble.

The question of how one should center an ensemble
does not appear to have received much attention in pub-
lished literature. Operationally, the singular vector (SV)
scheme at the European Centre for Medium-Range
Weather Forecasts (ECMWF; Buizza and Palmer 1995;
Molteni et al. 1996) and the breeding scheme at the
National Centers for Environmental Prediction (NCEP;
Toth and Kalnay 1993, 1997) both select symmetric
positive–negative paired centering, in which initial per-
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turbations are created by letting half of these pertur-
bations be the negative of the other half. Toth and Kal-
nay (1997) also proposed another method in which cen-
tered perturbations were obtained by removing the av-
erage of the perturbations from each individual
perturbation vector. Hereafter we call it the subtract-
mean method. Toth and Kalnay (1997) found that the
breeding ensemble centered by the subtract-mean meth-
od was less skillful than that centered by the symmetric
positive–negative paired method, and they also men-
tioned that the ECMWF found the same results for their
SV scheme. We revisited this subtract-mean method for
the breeding scheme, and the results are discussed in
section 5.

Beside making the sum of the perturbations equal to
zero, there are two additional aspects of the ensemble
that one needs to control when centering the initial per-
turbations. First, if the ensemble covariance is going to
be used to estimate the forecast error covariance then
one would like the analysis error covariance estimated
by the initial perturbations to be preserved before and
after centering; second, if ensemble forecast perturba-
tions are to be treated as equally likely error realizations,
then the centered analysis perturbations must also be
equally likely.

The traditional symmetric positive–negative pair
method satisfies the above requirements. In this paper
we describe a new centering method, called the spherical
simplex method. As shown in appendix A, if the en-
semble size were large enough to span all uncertain
directions and the analysis error covariance could be
modeled perfectly by the outer product of the initial
ensemble perturbations, symmetric positive–negative
paired centering provides third-order-accurate ensemble
mean and ensemble covariance. Hence it is superior to
the spherical simplex centering that only provides sec-
ond-order accuracy. But if the ensemble size is not suf-
ficiently large, which is true for a system with high
dimensions such as a typical atmospheric forecast mod-
el, the spherical simplex centering has the advantage of
allowing almost twice as many uncertain directions to
be spanned as the symmetric positive–negative paired
centering (see appendix A). When the ensemble size is
less than the number of uncertain directions, there is no
readily available theoretical basis for determining the
extent to which one centering scheme would outperform
the other. Consequently, we empirically tried both
schemes in order to determine which centering approach
yielded the most useful ensemble. Also note that for
computationally inexpensive ensemble generation
schemes such as the breeding and the ETKF schemes,
there is no apparent computational advantage in using
the common symmetric positive–negative paired cen-
tering relative to the spherical simplex centering. The
goal of this paper is to test both centering methods on
the ETKF scheme and to answer the question, which is
better, the symmetric positive–negative paired ETKF en-
semble or the spherical simplex ETKF ensemble?

In section 2 we introduce the theory of the spherical
simplex ETKF and the symmetric positive–negative
paired ETKF ensemble generation schemes. We also
demonstrate that the subtract-mean centering is sub-
optimal since the ETKF estimated analysis error co-
variance is not necessarily preserved. Section 3 de-
scribes briefly how the numerical experiment is de-
signed. Section 4 compares the performance of the
spherical simplex ETKF and symmetric positive–neg-
ative paired ETKF in terms of short-term ensemble sub-
space rank, the skills in estimating analysis error vari-
ance, and the accuracy of the ensemble mean and en-
semble variance. In section 5 we summarize and discuss
the results.

2. Theory of centering ETKF initial perturbations

a. Review of one-sided ETKF initial perturbations

The ETKF analysis perturbations are achieved by
postmultiplying the short-term ensemble forecast per-
turbations by a transformation matrix. This transfor-
mation matrix is obtained by solving the error covari-
ance update equation for an optimal data assimilation
scheme within the ensemble subspace [please see Bish-
op et al. (2001); Wang and Bishop (2003) for the ETKF
theory]. One-sided ETKF ensemble refers to the ETKF
ensemble whose initial perturbations are not explicitly
centered about the analysis. Specifically in our current
experiment, we define K forecast perturbations at the
12-h forecast lead time as

f f f f f ffX 5 (x 2 x , x 2 x , . . . , x 2 x ),1 2 K (1)

where , i 5 1, . . . , K, are K 12-h forecasts1 and isfx xi

the mean of the K 12-h forecasts, that is,

x 5 (x 1 x 1 · · · 1 x )/K.1 2 K (2)

The ensemble-estimated 12-h ensemble mean forecast
error covariance matrix is

Tf f fP 5 Z (Z ) , (3)

where Z f 5 X f / .2 The analysis perturbations Xa areÏK
obtained by postmultiplying (1) by a transformation ma-
trix T, that is,

a fX 5 X T. (4)

1 Note, as discussed in section 3 and also for the reason to maintain
fixed ensemble size during ensemble forecast cycling, in our exper-
iment below the K 12-h forecasts only include the K perturbed 12-h
forecasts without the 12-h control run.

2 Note that in Eqs. (A2)–(A7) of appendix A the weights used to
calculate the mean and the covariance are the same, specifically in
both (2) and (3), wi 5 1/K for all i [see (A2)–(A7) for wi]. Division
by K in (3) provides the maximum likelihood estimate of the co-
variance (Wilks 2002), whereas division by K 2 1 provides the cor-
responding unbiased estimate (Ross 1998). Both choices are reason-
able. To be consistent with the derivation in appendix A, we choose
the division by K in (3) and in all other variance and covariance
calculations.
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The transformation matrix T is derived from the error
covariance update equation for an optimal data assim-
ilation scheme provided that forecast error covariance
is given by Eq. (3) [see Bishop et al. (2001) and Wang
and Bishop (2003) for the derivation]. The result is T
5 C(G 1 I)21/2, where C and G are the eigenvector and
eigenvalue matrices of (X f )THTR21HX f /K, in which H
is the observation operator and R is the observation error
covariance matrix.

Note only K 2 1 independent ETKF analysis per-
turbations are generated from (1)–(4). This is because
the sum of the K forecast perturbations in (1) is zero
and therefore the last (i.e., the smallest) eigenvalue of
G is equal to zero (Note that throughout this paper, the
eigenvectors and corresponding eigenvalues are orga-
nized from left to right in order of decreasing eigen-
values). Thus, (1) postmultiplied by the last column of
C is a zero vector. In other words, the Kth analysis
perturbation is a zero vector. The K 2 1 nonzero ETKF
analysis perturbations can then be written as

a fa9 a9 a9 21/2X 5 (x , x , . . . , x ) 5 X C(G 1 I) , (5)1 2 K21

where , a K 3 (K 2 1) matrix, contains the first K 2C
1 columns of C, and is a (K 2 1) 3 (K 2 1) diagonalG
matrix whose diagonal elements contain the first K 2
1 eigenvalues in G. The sum of columns in Xa is not
zero as they are orthogonal to each other in the obser-
vation space [Eq. (23) in Wang and Bishop 2003]. In
other words, the ETKF analysis perturbations given by
(5) are not centered about the analysis. As discussed in
the introduction and appendix A, this is not desirable
for ensemble forecasting where the ensemble mean is
used to provide the minimum error variance estimate of
the true state and the ensemble covariance is used to
estimate the corresponding error covariance of this es-
timate. The goal of this work is to test different centering
schemes on the ETKF analysis perturbations.

b. Constraints on centering

To center the ETKF initial perturbations, beside mak-
ing the sum of the perturbations equal to zero, there are
two more aspects of the one-sided ETKF analysis per-
turbations in (5) that we need to preserve. First, the
analysis error covariance estimated by the one-sided
ETKF [see Eq. (18b) in Bishop et al. 2001] is

a f f a a21 T TTP 5 Z C(G 1 I) C (Z ) 5 X (X ) /K. (6)

Note the ETKF-estimated analysis error covariance giv-
en by (6) would be precisely equal to the true analysis
error covariance given that the true forecast error var-
iance were equal to (3) and the data assimilation scheme
were optimal (Bishop et al. 2001; Wang and Bishop
2003). In other words, the one-sided ETKF analysis
perturbations are the exact square roots of the analysis
error covariance (Tippett et al. 2003). Therefore, when
centering the one-sided ETKF initial perturbations, the
analysis error covariance given by (6) needs to be con-

served. Note this constraint tries to maintain the second-
order-accurate ensemble mean and covariance (appen-
dix A).

Second, as shown in appendix B the one-sided ETKF
initial perturbations projected onto observation space
and normalized by the root-mean-square (rms) obser-
vation error are equally likely. For the end users, the
ensemble outputs are easy to interpret if the ensemble
members are designed to be equally likely. For example,
evaluation of the ensemble spread by the rank histogram
(Hamill 2001) automatically assumes that each ensem-
ble member is equally likely. If the amplitude of one
initial perturbation were improbably larger than the oth-
ers, we would have to assign different weight to this
member when calculating ensemble mean and ensemble
covariance. To avoid such complications, we also re-
quire that the centered initial ETKF perturbations main-
tain the characteristic of being equally likely. This con-
straint will affect the higher-order accuracy of the en-
semble mean and ensemble covariance (appendix A).

c. Spherical simplex centering for the ETKF

To achieve spherical simplex centering, one post-
multiplies Xa in (5) by a (K 2 1) 3 K matrix U to form
K perturbations

a a aa aY 5 X U 5 (y 9, y 9, . . . , y 9).1 2 K (7)

Note hereafter the initial state ensemble is defined to
include the analysis and K perturbed members. The ma-
trix U is selected to ensure that (a) the sum of , i 5ay 9i

1, . . . , K is zero; (b) the analysis error covariance es-
timated by the outer product of (7) is equal to (6); and
(c) the centered perturbations projected onto observa-
tion space and normalized by the root-mean-square ob-
servation error, denoted as H̃ , i 5 1, . . . , K, areay 9i

equally likely (see appendix B for the meaning of
‘‘equally likely’’).

A sufficient condition to meet requirement (a) is that

U1 5 0, (8)

where 0 is a vector with each element equal to zero,
and 1 is a vector with each element equal to one. From
(5), (6), and (7), the requirement (b) of preserving the
ETKF-estimated analysis error covariance after center-
ing is satisfied whenever

TUU 5 I, (9)

where I is the identity matrix. To satisfy the requirement
(c), that is, to let the value of the probability density
function (pdf ) of H̃ be equal to each other for all i,ay 9i

first note that from requirement (b) the analysis error
covariance in observation space estimated by H̃Ya is
equal to (B4). Also, from (B3) and (7),

a a aa 1/2˜ ˜HY 5 H(y 9, y 9, . . . , y 9) 5 ÏKED U.1 2 K (10)

Substituting (B4) and (10) into (B1) to replace P and
x9, we find that in order to satisfy the requirement (c)
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the diagonal elements of UTU must be equal to each
other, that is, each column of U must have the same
magnitude.

There is more than one U satisfying the three re-
quirements. So far we have found two easy solutions,
shown in appendix C. Because the matrix U comes from
the concepts of spherical simplex sigma points [see ap-
pendixes A and C and/or Julier and Uhlmann (2003)],
we call the ETKF analysis perturbations constructed this
way the spherical simplex ETKF. Note also that the third
requirement for designing the simplex points depends
on user’s interest. For example, Julier and Uhlmann
(2002a) chose the simplex points and the weights in a
way that would minimize the skewness of the simplex
points so that the errors in the estimate of the mean and
covariance associated with the third-order moment—
that is, the skewness—were minimized.

Because the ensemble size is much smaller than the
number of directions to which the true error variance
projects, the data assimilation scheme in reality is not
optimal and the model is not perfect, so the error var-
iance is significantly underestimated by the ETKF. The
inflation factor method introduced in Wang and Bishop
(2003) is used to ameliorate this problem. The idea is
to multiply the initial perturbations in (7) by an inflation
factor to ensure that 12-h ensemble forecast variance is
consistent with the 12-h control forecast error variance
over global observation sites [please see section 2c of
Wang and Bishop (2003) for details]. At each pertur-
bation update time the maximum likelihood parameter
estimation theory (Dee 1995) is used to check this con-
sistency and calculate an instantaneous inflation factor.
The overall inflation factor used to inflate the pertur-
bations in (7) is the product of all previous and current
instantaneous inflation factors. In our experiment, the
instantaneous inflation factor converges to 1, and the
overall inflation factor oscillates about a constant within
1 week of 12-h perturbation initialization and forecast
cycles. This quick convergence results from the fact that
for the global observational network, the number of
independent elements in the innovation vector is large.
In this way, the value of the overall inflation factor is
automatically determined by the ensemble forecasting
system itself.

d. Symmetric positive–negative paired centering for
the ETKF

In the traditional symmetric positive–negative paired
centering scheme, an ensemble of K initial perturbations
is created by letting half of these perturbations be the
negative of the other half. In this section, we apply the
symmetric positive–negative paired centering scheme to
the ETKF initial perturbations. Specifically, K positive–
negative paired ETKF initial perturbations are built from
K / 2 independent one-sided ETKF perturbations. From
K 12-h ensemble perturbations defined in the same way

as in Eq. (1), optimal truncation3 is used to obtain K/2
one-sided ETKF perturbations, that is,

a f f 21/2X 5 X T 5 X C (G 1 I )t t tt

a9 a9 a95 (x , x , . . . , x ), (11)1 2 K /2

where the subscript t denotes the truncation. The di-
agonal elements of the K/2 3 K/2 matrix Gt contains
the largest K/2 eigenvalues of (X f )THTR21HX f /K. The
matrix Ct contains the corresponding K/2 eigenvectors.
Because the variance of the 12-h forecast perturbations
starting from the positive–negative paired analysis per-
turbations are mainly distributed in the first half eigen-
vectors (see also Fig. 2 later), almost all variance is
maintained in the truncated space associated with the
one-sided perturbations in (11). The K/2 pairs of per-
turbations Ya are then built up as

1
a a9 a9 a9 a9 a9 a9Y 5 · (x , x , . . . , x , 2x , 2x , . . . , 2x ),1 2 K /2 1 2 K /2Ï2

(12)

where the coefficient 1/ is selected to conserve theÏ2
variance. Mathematically, Eq. (12) is equivalent to post-
multiplying Xa in (11) by a K/2 3 K matrix S, that is,

1
S 5 {I(2I)}, (13)

Ï2

where {I(2I)} is a K/2 3 K matrix. The K/2 3 K/2
identity matrix I constructs the first K/2 columns and
2I constructs the remaining K/2 columns. It is easy to
verify that S also satisfies requirements (a), (b), and (c)
in section 2c. However, it only contains K/2 independent
directions while the U matrix in (7) has K 2 1 inde-
pendent directions. The inflation factor method of Bish-
op and Wang (2003) is also applied to the symmetric
positive–negative paired ETKF ensemble.

e. Problem in subtract-mean centering

In the subtract-mean method, centered perturbations
are obtained by removing the mean of the perturbations
from each individual perturbation vector. Such an ap-
proach would be appropriate if one had a set of per-
turbations that represented a random sample of analysis
errors. However, square root filters such as the ETKF
described in Bishop et al. (2001) provide analysis per-
turbations that are not, strictly speaking, random sam-
ples drawn from the distribution of the analysis error.
Instead, as discussed in section 2a, they are the square
roots of the analysis error covariance matrix. Thus, as
shown in Eq. (6), the analysis error covariance is given
by the outer product of these one-sided initial pertur-
bations without removing the mean of the one-sided
initial perturbations. As discussed below, we do not

3 We call the truncation in (11) ‘‘optimal’’ as the eigenvectors cor-
responding to the first-half largest eigenvalues are maintained.
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FIG. 1. Illustration that the subtract-mean centering scheme does
not preserve the covariance. (a) Assume two one-sided 2D pertur-
bations at (0, 1) and (1, 0). (b) After subtracting the mean, the two
perturbations are (21/2, 1/2) and (1/2, 21/2).

want to apply the subtract-mean centering to the ETKF
because the ETKF-estimated analysis error covariance
given by (6) will not be preserved after the mean is
subtracted. Specifically, suppose we have K one-sided
ETKF initial perturbations contained in K columns of
Xa and the analysis error covariance is estimated by its
outer product as in (6). If written in the similar format
of (7), the subtract-mean centering is equivalent to post-
multiplying Xa by a K 3 K matrix V, where

1 2 1/K 21/K · · · 21/K 
 21/K 1 2 1/K · · · 21/K

V 5 . (14) _ _ _ _ 
21/K 21/K · · · 1 2 1/K 

Although V satisfies requirement (a) and (c) in section
2c, it is easy to verify that requirement (b) is not guar-
anteed to be satisfied because

TVV 5 V ± I. (15)

In fact, both the initial ensemble variance and the en-
semble subspace rank are changed after the subtract-
mean centering. This can be further illustrated by Fig.
1. In Fig. 1a, assume two one-sided ETKF initial per-
turbations locate at (0, 1) and (1, 0). After subtracting
the average of these two one-sided perturbations, the
new perturbations locate in Fig. 1b at (1/2, 21/2) and
(21/2, 1/2). So, after subtract-mean centering the two-
dimensional one-sided ETKF ensemble subspace col-
lapses to one dimension and the variance is reduced to
half of that of the one-sided ETKF perturbations. Note
the ETKF-estimated analysis error covariance is given
by the outer product of (0, 1) and (1, 0). So after sub-
tract-mean centering, the outer product of (1/2, 21/2)
and (21/2, 1/2) does not preserve the ETKF-estimated
analysis error covariance. Since subtract-mean centering
cannot satisfy our three constraints, we did not apply it
to the ETKF ensemble. However, as mentioned in sec-
tion 5, we tried the subtract-mean centering for the
breeding ensembles following Toth and Kalnay (1997).

3. Numerical experiment design

In our experiment, the ensemble includes 1 control
forecast and 16 perturbed forecasts, that is, K 5 16. We
used the same numerical model CCM3 (Jeffery et al.
1996) at T42 resolution as in Wang and Bishop (2003).
We also used the NCEP–NCAR reanalysis (Kalnay et
al. 1996) as the analysis and verification. The time pe-
riod we consider is the Northern Hemisphere summer
in year 2000. The observational network was also as-
sumed to contain only rawinsonde observations. Pseu-
do-observations were obtained from the reanalysis data
by relabeling reanalysis values of wind and temperature
at the rawinsonde sites as ‘‘observations.’’ The obser-
vation error covariance matrix was assumed to be time
independent and diagonal. To estimate the error variance
of these pseudo-observations, we first calculate 12-h

innovation (‘‘observation’’ minus 12-h control forecast)
sample variance for wind and temperature at each ob-
servation site by averaging all the squared 12-h inno-
vations in the summer of 2000 at each observation site.
Then we choose the smallest wind and temperature in-
novation sample variance of all observation sites as the
observation error variance [please refer to section 3 in
Wang and Bishop (2003) for more details].
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FIG. 2. Seasonally averaged spectra of eigenvalues of 12-h ensem-
ble-estimated forecast error covariance matrices normalized by ob-
servation error covariance in observation sites for spherical simplex
ETKF and paired ETKF ensembles. The 12-h ensemble covariance
is calculated by the 16 perturbed 12-h forecasts.

As shown above, each initial ETKF perturbed mem-
ber is equally likely. Thus the weights assigned to each
of the K perturbed members when calculating ensemble
mean and ensemble covariance are the same [1/K in
Eqs. (2) and (3)]. However, the probability density of
the initial analysis is generally different from that of the
perturbed members. Thus, the control member should
be weighted differently than the perturbed ensemble
members when estimating the mean and covariance of
the distribution. The weight that should be assigned to
the control member depends on the knowledge of the
forecast error covariances of the control forecasts and
the individual perturbed ensemble members. This topic
needs extra exploration and will be included in future
work. Since in this paper we focus on exploring the skill
of two ensemble centering schemes, for simplicity we
assign zero weight to the control member when cal-
culating ensemble mean and covariance, which will not
affect the qualitative comparison results.

4. Comparison of spherical simplex ETKF with
symmetric positive–negative paired ETKF

In this section, we compare the performance of the
spherical simplex ETKF and the symmetric positive–
negative paired ETKF ensembles. Because the experi-
ment results of the spherical simplex ETKF correspond-
ing to solutions 1 and 2 in appendix C are similar, we
only show those corresponding to solution 1. Note that
solution 1 is a trivial extension of the one-sided ETKF
in Eq. (5); hence, it is easy for those familiar with the
ETKF to understand.

a. Maintenance of variance along orthogonal basis
vectors

As discussed in appendix A, the short-term error co-
variance estimates by 16 ensemble members in pre-
dicting the true mean and true error covariance have
rank 15 for the spherical simplex ETKF scheme, but
only 8 for the symmetric positive–negative paired ETKF
scheme [see second-order terms in (A18) and (A19)].
This expectation is confirmed by the seasonally aver-
aged eigenvalue spectra for 12-h ensemble-based error
covariance matrix in observation space in Fig. 2 [see
similar plot and definition of the eigenvalue spectra in
Fig. 5 of Wang and Bishop (2003)]. Note as discussed
in section 3, in our experiment 16 perturbed 12-h fore-
casts are used to calculate the 12-h ensemble covari-
ance.4 Figure 2 shows that while the 12-h ensemble
forecast variance for the spherical simplex ETKF en-
semble is evenly spread in 15 directions, almost all en-

4 Note that for an ensemble with initial perturbations centering on
the analysis, short-term (e.g., 12 h for T42 CCM3) ensemble mean
is close to the short-term control forecast. Ensemble subspace rank
of the short-term ensemble perturbations with the control run included
is approximately the same as that with no control run included.

semble variance is maintained in only 8 directions for
the symmetric positive–negative paired ETKF ensem-
ble. As a consequence, short-term optimal growth
(Wang and Bishop 2003 section 6; Farrell 1988, 1989)
within the ensemble perturbation subspace is larger for
the spherical simplex ETKF than for the paired ETKF
(not shown).

b. Comparison of initial ensemble variance

Figure 3 shows the square root of the seasonally and
vertically averaged initial wind error variance estimated
by the spherical simplex ETKF and the symmetric pos-
itive–negative paired ETKF ensembles. For both the
spherical simplex ETKF and the paired ETKF ensem-
bles, the initial ensemble variance over the ocean is
generally larger than that over the land at the same
latitude, which is consistent with the fact that rawin-
sonde observations are more numerous over the land.
The spherical simplex ETKF initial ensemble variance
over the Southern Hemisphere (SH) is much larger than
over the Northern Hemisphere (NH), which is consistent
with the fact that the rawinsonde distribution is much
less distributed in the SH than in the NH. Another pos-
sible reason for this SH–NH contrast is that the spherical
simplex ETKF ensemble subspace may properly extract
the maximal growing modes of the winter hemisphere
(SH in the current experiment) tropospheric wind field.
Note the growth of these modes is larger in the winter
hemisphere than in the summer hemisphere (NH in the
current experiment). In comparison, this NH–SH con-
trast in the initial ensemble variance is smaller for the
paired ETKF than for the spherical simplex ETKF.
These results may indicate that the spherical simplex
ETKF ensemble represents geographical variations in
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FIG. 3. Square root of seasonally and vertically averaged ensemble wind variance of initial ensemble perturbations
for (a) spherical simplex ETKF ensemble and (b) paired ETKF ensemble. Contour interval is 0.3 m s 21. Label H
indicates local maximum.

the analysis error variance due to geographical varia-
tions in both observation distribution and error growth
rates better than the paired ETKF ensemble. Results (not
shown) from runs for NH winter are also consistent with
this hypothesis. It is shown from the NH winter runs
that the spherical simplex ETKF initial ensemble var-
iance over the NH ocean is larger than that over the SH
ocean, and its initial ensemble variance over the NH

ocean is larger than that over the NH continent. In com-
parison, these contrasts are smaller in the paired ETKF
initial ensemble variance.

To better reveal how ensemble spread is governed by
the observation density, we plot the rescaling factor that
is defined as the ratio of ensemble-estimated initial rms
wind error over ensemble-estimated 12-h forecast rms
wind error. Such maps give a representation of the geo-
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FIG. 4. Seasonally and vertically averaged ratio of ensemble estimated rms initial wind error over ensemble
estimated rms 12-h forecast wind error for (a) spherical simplex ETKF and (b) paired ETKF ensembles. Contour
interval is 0.003.

graphical distribution of the factor that rescales 12-h
forecast ensemble spread into initial ensemble spread.
In regions where forecast error variance is large but
observations are populated, the rescaling factor is ex-
pected be small [see also the discussion in section 4 of
Wang and Bishop (2003)]. Figure 4 shows the vertically
and seasonally averaged rescaling factor. The effective
rescaling factor for the spherical simplex ETKF not only

reflects the high concentration of observations over Eu-
rope and North America, it is also able to account for
the smaller midlatitude observation concentrations over
Southern Hemisphere (SH) continents. In contrast, the
rescaling factor of the positive–negative paired ETKF
does not account for these land-based observation con-
centrations within SH as well as the spherical simplex
ETKF.
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FIG. 5. Globally (all model grids at 200, 500, and 850 hPa) and
seasonally averaged ensemble mean forecast error in terms of the
approximate total energy norm as a function of forecast lead time
for the spherical simplex ETKF, paired ETKF, and one-sided ETKF
ensembles. The corresponding measurement of the control forecast
error is also shown.

c. Root-mean-square error of the ensemble mean

Figure 5 shows 200-, 500- and 850-hPa globally av-
eraged ensemble mean forecast error in terms of the
approximate energy norm [see definition in Eq. (26) of
Wang and Bishop (2003)] for the spherical simplex
ETKF, paired ETKF, and one-sided ETKF ensembles
with 16 perturbed members each (recall that as discussed
in section 3 the control is not included when calculating
the ensemble mean for any of the ensembles considered
here including the one-sided ETKF). The corresponding
measurements of control forecast errors are also shown
for comparison. The verifications are the NCEP–NCAR
reanalysis data. Figure 5 shows that the ensemble mean
of the spherical simplex ETKF is more accurate than
the symmetric positive–negative paired ETKF through-
out 1–10-day forecast lead times. Further analysis dem-
onstrates that the improvement of the ensemble mean
from spherical simplex ETKF relative to that from the
paired ETKF is mainly in the SH, the winter hemisphere.
Extra runs for the time of NH winter show statistically
significant improvement of the spherical simplex ETKF
relative to the paired ETKF on both hemispheres. From
Fig. 5, although the paired ETKF is centered on the
analysis initially, its ensemble mean is less accurate than
that of the one-sided ETKF from 2–10-day forecast lead
times. Note that for the same ensemble size the one-
sided ETKF ensemble has one more subspace rank than
the spherical simplex ETKF. All these results indicate
that for a given ensemble size it is more important to
represent as many error directions as possible than to
maintain a little more accuracy in fewer directions.

Figure 5 also shows that there is a small improvement
of the spherical simplex ETKF ensemble mean over the
one-sided ETKF ensemble mean at all lead times. We
speculate three reasons that may explain why in our
current experiment the ensemble mean of the one-sided
ETKF is only a little less accurate than that of the spher-
ical simplex ETKF. First, the one-sided ETKF has one
more subensemble direction than the spherical simplex
ETKF for a given ensemble size. Second, the initial
ensemble variance is distributed evenly onto 16 or-
thogonal directions spanned by the one-sided ETKF ini-
tial perturbations. Thus the deviation of the initial one-
sided ETKF ensemble mean from the analysis is smaller
than that in the case in which the same amount of initial
ensemble variance is contained mainly in one direction.
Third, because of suboptimality in the data assimilation
scheme used to produce the reanalysis datasets, the anal-
ysis may be a relatively poor approximation to an op-
timal minimum error variance estimate. Such subopti-
mality decreases the advantages of centering the initial
perturbations on the analysis rather than on some point
close to the analysis (note from the second explanation
above that the one-sided ETKF initial ensemble is cen-
tered on a point close to the analysis).

d. Comparison of ensemble predictions of innovation
variance

To compare the skill of the ensemble spread in pre-
dicting the forecast error variance, we adopt the methods
introduced in section 8 of Wang and Bishop (2003). The
results below show that for 1- and 2-day forecast lead
times the skill of the ensemble predictions of the in-
novation variance from the spherical simplex ETKF sig-
nificantly outperforms that of the paired ETKF. For lon-
ger forecast lead times from 3 to 10 days, their skills
become close.

Figure 6 shows the relationship between the sample
innovation variance and the ensemble variance for
500-hPa U at 1-day forecast lead time. This figure is
generated by first drawing a scatterplot for which the
ordinate and abscissa of each point is respectively given
by the squared 500-hPa U wind innovation and 500-hPa
U wind ensemble variance at 1-day forecast at one mid-
latitude rawinsonde observation location. The innova-
tion is defined here as the difference between the ver-
ifying analysis and the 1-day ensemble mean forecast
at the rawinsonde observation sites. Points collected
correspond to all midlatitude stations and all 1-day
500-hPa U forecasts throughout the NH summer in year
2000. To begin, we divide the points into four equally
populated bins, arranged in order of increasing ensemble
variance. Then we average the squared innovation and
ensemble variance in each bin, respectively. Connecting
the averaged points then yields a curve describing the
relationship between the sample innovation variance and
the ensemble variance. The results corresponding to the
4-bin and 32-bin cases for 1-day forecast lead time are
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FIG. 6. The relationship between the 500-mb U sample innovation
variance and the ensemble variance at 1-day forecast lead time. Solid
lines are for the 4-bin case and dashed lines for 32-bin case. The R2

value is a measurement of how noisy the dashed curve is relative to
the solid curve. For details please refer to the text in section 4d.

shown in Fig. 6. First, note that the range of innovation
variance resolved by the spherical simplex ETKF en-
semble variance is much larger than that of the paired
ETKF. A statistical test based on halving the data size
was used to confirm this result. Second, as the sample
size in each bin is decreased (e.g., from 4-bin case to
32-bin case), the relationship between sample innova-
tion variance and the ensemble variance for 1-day fore-
casts becomes noisier for the paired ETKF than for the

spherical simplex ETKF. The noisiness of the dashed
curve relative to the solid curve is measured by the R2

value (Ott 1993). Less noisiness corresponds to large
R2 value. A statistical t test (Ott 1993) is used to confirm
that the R2 value of the spherical simplex ETKF is sig-
nificantly larger than that of the paired ETKF. According
to the analysis in section 8 of Wang and Bishop (2003),
these results show that for 1-day forecast (true for 2-
day forecast as well; not shown), the ensemble spread
of the spherical simplex ETKF is more accurate in pre-
dicting the forecast error variance than that of the paired
ETKF. Our results also shows that for longer forecast
lead times from 3 to 10 days, the skills of the two
centering schemes in predicting the innovation variance
become statistically indistinguishable. Figure 7, which
shows the results for 10-day forecast lead time, illus-
trates this point.

5. Summary and discussion

In this paper, we tested the performance of two en-
semble-centering methods for the ETKF ensemble. One
was the common symmetric positive–negative paired
centering and the other was the spherical simplex cen-
tering. In the spherical simplex scheme, one more per-
turbation was added to one-sided ETKF initial pertur-
bations such that (a) the sum of the new set of initial
perturbations equaled zero, (b) the sample covariance
of the new perturbations was equal to the ETKF esti-
mated analysis error covariance matrix, and (c) all the
new initial perturbations were equally likely.

For an ensemble of K perturbed members, the spher-
ical simplex ETKF maintained comparable amounts of
variance in K 2 1 orthogonal and uncorrelated direc-
tions as compared to only K/2 directions for the paired
ETKF over short forecast lead times. The initial ensem-
ble variance from the spherical simplex ETKF better
reflected the geographical variations of the observations
than the paired ETKF. The spherical simplex ETKF en-
semble mean was found to be more accurate than the
mean of the positive–negative paired ETKF ensemble.
The spherical simplex ETKF ensemble variance re-
solved a significantly larger range of sample innovation
variance than the paired ETKF for 1- and 2-day forecast
lead times. Because the spherical simplex ETKF initial
perturbations were generated by simply postmultiplying
the one-sided ETKF initial perturbations by a (K 2 1)
3 K matrix (section 2c), where K equals the number of
perturbed members, the computational expense of gen-
erating the spherical simplex ETKF ensemble is about
the same as that of generating the symmetric positive–
negative paired ETKF ensemble.

In section 2, it was algebraically demonstrated that
the subtract-mean centering scheme proposed by Toth
and Kalnay (1997) does not preserve the ETKF esti-
mated analysis error covariance. For this reason, we did
not apply it to the ETKF ensemble. However, intrigued
by Toth and Kalnay’s (1997) findings, we went ahead
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FIG. 7. As in Fig. 6, except for 10-day forecast lead time.

and tested the subtract-mean centering for the breeding
ensembles [see section 5b of Toth and Kalnay (1997)].
The experimental environment was the same as for the
ETKF (see also Wang and Bishop 2003). We found that
the symmetric positive–negative paired breeding had in-
ferior forecast skill in both mean and ensemble spread
than the subtract-mean breeding. Examination of the
eigenvalue spectra of the 12-h ensemble forecast co-
variance showed that the K/2 (8 in this experiment)
trailing eigenvalues of the subtract-mean breeding en-
semble were significantly larger than those of the paired

breeding. We thus speculated that it was the ability of
the subtract-mean centering to maintain error variance
in more than K/2 directions that made the subtract-mean
breeding perform better than the paired breeding. How-
ever, these results appear to be inconsistent with those
reported in Toth and Kalnay (1997) in which it was
found that the paired breeding was more skillful than
the subtract-mean breeding. We have no firm explana-
tion for this discrepancy.

When initial perturbations are generated to have equal
probability density they should be assigned equal
weights when calculating ensemble means and covari-
ances. However, in most circumstances, the control fore-
cast and/or the members of a multimodel ensemble are
unlikely to be equally probable. In such circumstances,
one should assign different weights to ensemble mem-
bers when computing means and covariances. We shall
address this issue in more detail in future work.
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APPENDIX A

Theoretical Analysis on the Skill of Sigma Points
in Predicting Mean and Covariance

Assuming the initial state vector is a symmetrically
distributed random vector x with mean and covariancex
Px, an important aim of ensemble forecasting is to pre-
dict the mean and covariance Py of the distributiony
of the forecast states given a prediction model and ob-
servations. Let y denote a random draw from this dis-
tribution, where y is related to x by the nonlinear model
operator M:

y 5 M(x). (A1)

The basic idea of the sigma-point ensemble is to find
initial perturbations that capture the mean and covari-
ance information while at the same time permitting the
direct propagation of the information through the non-
linear model operator. Specifically, K initial state vectors
xi, i 5 1, . . . , K, are chosen to reflect the first two
moments of x, that is,

K

w x 5 x, (A2)O i i
i51

K

Tw (x 2 x)(x 2 x) 5 P , (A3)O xi i i
i51

where wi, i 5 1, . . . , K, are weights satisfying wi
KSi51

5 1. If xi, i 5 1, . . . , K, are equally likely, then wi, i
5 1, . . . , K, are equal to each other. Equation (A3) is
satisfied if (xi 2 ) is chosen to be equal to the ithÏw xi

column of the square root matrix of Px. The initial per-
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turbations constructed in this way are called sigma
points, which are denoted as si 5 xi 2 . Then Eqs.x
(A2) and (A3) become

K

w s 5 0, (A4)O i i
i51

K

Tw s (s ) 5 P . (A5)O xi i i
i51

To estimate the mean and covariance of the future state,
each point xi is propagated through (A1) to obtain yi 5
M(xi). Then, the estimated mean and covariance of the
forecast state y are given by

K

y 5 w y , (A6)O i i
i51

K

TP 5 w (y 2 y)(y 2 y) . (A7)Oy i i i
i51

The ETKF ensemble generation scheme (Bishop et al.
2001; Wang and Bishop 2003) together with other forms
of the deterministic ensemble square root filter (Tippett
et al. 2003; Anderson 2001; Whitaker and Hamill 2002)
produce sigma-point ensembles aiming to satisfy (A4)
and (A5). Arguably, the singular vector ensemble fore-
cast scheme (Molteni et al. 1996) at ECMWF and the
breeding scheme (Toth and Kalnay 1993, 1997) at NCEP
can also be regarded as approximations to sigma-point
ensembles. In the following, we perform a multidimen-
sional Taylor series in order to analyze the skill of sigma
points in predicting the true mean and true covariance
(see also Julier and Uhlmann 2002b). The discussion is
first based on the assumption that Px is precisely mod-
eled by (A2)–(A5). The implications of the fact that the
ensemble size is too small to model Px correctly is dis-
cussed at the end of section A2.

a. True mean and covariance

Consider the initial random vector x as the mean x
plus a zero-mean disturbance Dx with covariance Px.
Then the Taylor series expansion of the nonlinear trans-
formation M(x) about isx

y 5 M(x 1 Dx)
2 3 4D M D M D MDx Dx Dx5 M(x) 1 D M 1 1 1 1 · · · ,Dx 2! 3! 4!

(A8)

where the DDxM operator evaluates the total differential
of M when perturbed around by Dx. The operator canx
be written as

n ]
TD 5 Dx 5 (Dx) · =, (A9)ODx k ]xk51 k

which acts on M on a component-by-component basis.
Here, n is the number of elements in x. The jth term in
(A8) is given by

j
|

| |
jD M D {D [ · · · (D M )]}Dx Dx Dx Dx5
j! j!

jn1 ]
5 Dx M(x)| . (A10)O k x[x1 2j! ]xk51 k

Equation (A10) can be expressed as a sum of compo-
nents, each of which is a product of a jth-order product
of Dx and a jth-order differential of M with respect to x.

Recall that Dx is assumed to be symmetrically dis-
tributed with its mean equal to zero. By symmetry, the
expected value of all odd terms in (A8) is zero. Taking
expectations (denoted by operator E) of (A8), we obtain
the true mean (denoted by the superscript t)

T 4= P = D Mx Dxty 5 M(x) 1 M 1 E 1 · · · . (A11)1 2 1 22! 4!

The second-order even terms in (A11) is obtained by
noting that

2 T TD M Dx =Dx =DxE 5 E M1 2 1 2[ ]2! 2!

T T T= DxDx = = P =x5 E M 5 M. (A12)1 2 1 2[ ]2! 2!

The true covariance of the forecast state is given by

t t TtP 5 E[(y 2 y )(y 2 y ) ].y (A13)

Substitute (A8) and (A11) into (A13). Recall the sym-
metry of Dx and thus the expected value of all odd order
terms of Dx evaluates to zero. The true covariance (writ-
ten up to fourth order) is

T
3 T 2 2 T 3 T T TD M(D M ) D M(D M ) D M(D M ) = P = = P =x xDx Dx Dx Dx Dx Dxt TP 5 MP M 1 E 1 1 2 M M 1 · · · , (A14)y x 1 2 1 2[ ] [ ][ ]3! 2! 3 2! 3! 2! 2!

where M is the Jacobian matrix of M or the linearized
dynamics operator of M (Ide et al. 1997) evaluated about

, that is, DDxM 5 MDx. Note the model is assumed tox
be perfect in the above discussion.
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b. Sigma-point ensemble mean and covariance

The sigma-point ensemble predicts the mean from the
propagated set of points yi by using (A6). Consider the
Taylor series for the transition of each point xi. Each
propagated point yi can be expressed as the Taylor series
about ,x

y 5 M(x ) 5 M(x 1 s )i i i

2 3 4D M D M D Ms s si i i5 M(x) 1 D M 1 1 1 1 · · · .si 2! 3! 4!
(A15)

Applying Eq. (A6), the predicted mean is

K 2 3D M D Ms si iy 5 w M(x) 1 D M 1 1O si i[ 2! 3!i51

4D Msi1 1 · · · . (A16)]4!

Recall from (A9) and (A12) that

TD M 5 s · =M, ands ii

2 T TD M = s s =s i ii 5 M, (A17)1 22! 2!

and apply Eqs. (A4) and (A5) on the second and third
terms of Eq. (A16), Eq. (A16) becomes

T= P =xy 5 M(x) 1 M1 22!

K 3 4D M D Ms si i1 w 1 1 · · · . (A18)O i1 23! 4!i51

To obtain the sigma-point counterpart of (A14) for
the second-moment of the distribution, substitute (A15)
and (A18) into (A7) and recall (A5) and the identity
D M 5 Msi, the sigma-point predicted covariancesi

(written up to fourth order) is

TK K2 2 3 T 2 2 T 3 TD M D M D M(D M ) D M(D M ) D M(D M )s s s s s s s si i i i i i i iTTP 5 MP M 1 w D M 1 (D M ) 1 w 1 1O Os sy x i ii i1 2[ ] [ ]2! 2! 3! 2! 3 2! 3!i51 i51

T TK KT T 3= P = = P = D Msx x i2 M M 2 w D M wO Osi ii1 2 1 2 1 2[ ][ ] [2! 2! 3!i51 i51

K 3D Msi T1 w (D M ) 1 · · · . (A19)O si i1 2 ]3!i51

Comparing (A19) with (A14) and (A18) with (A11),
for a sufficiently large sigma-point ensemble that can
represent all uncertain directions of the system so that
the analysis error covariance can be modeled precisely
by (A3), the sigma-point ensemble mean and covariance
agree with the true mean and true covariance at least
up to the second-order term. For symmetric positive–
negative paired sigma points with equal weights on each
member of the same pair, by symmetry the odd order
terms in (A18) and (A19) vanish, and therefore the ac-
curacy of the estimated mean and covariance is up to
third order. For the simplex sigma-point ensemble, the
si’s are not symmetric, and hence the ensemble mean
and covariance only have second-order accuracy.

The above analysis is predicated upon the assumption
that the analysis error covariances were perfectly modeled
by (A3). However, in reality there is no prior knowledge
about the true analysis error covariance, and the ensemble
size K is much smaller than the rank of the true analysis
error covariance. In this situation, the sigma–point-esti-
mated Px, and thus the second-order term on the right-
hand side of (A18) and (A19), has rank of K 2 1 for the
simplex ensemble, but only K/2 for the symmetric posi-

tive–negative paired ensemble. In other words, the simplex
sigma-point ensemble can describe error variance in more
directions than the paired sigma-point ensemble. In the
case where the initial sigma points precisely model the
analysis error variance for each direction within the en-
semble subspace, the simplex sigma point would provide
second-order-accurate mean and covariance in K 2 1 di-
rections whereas the paired sigma point would have third-
order accuracy in only K/2 directions.

Note also if the sum of the initial perturbations is not
zero and Px is estimated by the outer product of un-
centered perturbations such as those from the one-sided
ETKF, the ensemble mean and ensemble covariance cal-
culated by (A6) and (A7) will not even agree with the
first- and second-order terms of the Taylor expansions
for the true mean and covariance.

APPENDIX B

Sense in which One-Sided ETKF Initial
Perturbations are Equally Likely

To see the sense in which one-sided ETKF initial
perturbations are equally likely, note that for an n-di-
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mensional, normally distributed, and zero-mean random
variable x9, the pdf, that is, p(x9), is given by,

1
212n /2 21/2 Tp(x9) 5 (2p) (detP) exp 2 (x9) P (x9) , (B1)[ ]2

where P is the covariance matrix of x9 and detP is the
determinant of P (see Dee 1995; Ross 1998). In the
following we show that assuming a multidimensional
normal distribution, the one-sided ETKF initial pertur-
bations projected onto observation space and normal-
ized by the root-mean-square observation error have
equal pdfs. See denotations in section 2a.

Define E 5 H̃Z f 21/2, where H̃ is the observationCG
operator H normalized by the square root of the obser-
vation error covariance matrix R, that is, H̃ 5 R21/2H.
Then keeping in mind that (1) postmultiplied by the last
column of C is a zero vector, it is easy to verify that

f T T˜ ˜HP H 5 EGE . (B2)

Here (B2) can be regarded as an approximate eigen-
structure expression of H̃P fH̃T since ETE 5 I but EET

± I. Defining D 5 ( 1 I)21, then from (5), (6), andG G
the definition of E and Z f , we obtain

a a9 a9 a9 1/2˜ ˜HX 5 H(x , x , . . . , x ) 5 ÏKED , (B3)1 2 K21

a T T˜ ˜HP H 5 EDE . (B4)

Similarly the matrices E and D are the approximate
eigenvector and eigenvalue matrices of H̃PaH̃T. Replace
P21 in (B1) by the approximate inversionB1 of H̃PaH̃T,
which according to (B4) is (H̃PaH̃T)21 ø ED21ET. Also
replace x9 in (B1) by H̃ , i from 1 to K 2 1 in (B3).ax 9i

Then it is easy to verify that the probability density of
H̃ , that is, p(H̃ ), is the same for all i. Hence, thesea ax 9 x 9i i

perturbations are equally likely.

APPENDIX C

Spherical Simplex Sigma Points

The minimum number of sigma points required to
have the same mean and covariance as an n-dimen-
sional random variable is n 1 1 (Julier and Uhlmann
2002a; Julier 2003). Specifically, to satisfy (A4) and
(A5), the minimum number of s i is n 1 1 if x is an n-
dimensional random variable. We call any set of such
points simplex sigma points. Besides satisfying (A4) and
(A5), the spherical simplex sigma points also require
that the n 1 1 si’s are equally likely. If the covariance
matrix of x, Px, is homogeneous, that is, the eigenvalues
of Px are all equal to each other, then it is easy to verify
from Eq. (B1) that in order for each s i to be equally
likely (i.e., have the same probability density), each si

must have equal distance to the origin. In other words,
the n 1 1 si’s lie on a hypersphere.

Recall in section 2c, for K 2 1 one-sided independent
ETKF initial perturbations, we seek a (K 2 1) 3 K

B1 Called pseudoinverse in linear algebra (Nakos and Joyner 1998).

matrix U to satisfy (a) U1 5 0, (b) UUT 5 I, and (c)
each column of U has the same magnitude. In condition
(a), 0 is a vector with each element equal to zero and
1 is a vector with each element equal to one. From these
three requirements and the definition of the spherical
simplex points above, solving for the (K 2 1) 3 K
matrix U is equivalent to obtaining K spherical simplex
sigma points, each of which is a (K 2 1)-dimensional
variable. The mean of these K spherical simplex sigma
points is a zero vector, the covariance is proportional
to the identity matrix, and the distance of these K points
to the origin (or in other words the magnitude of each
point) must be equal to each other. In our experiment,
we construct two easy sets of spherical simplex points
U that satisfy conditions (a)–(c).

a. Solution 1

Here, we show how a trivial extension of the ETKF
can be used to obtain ensemble satisfying conditions
(a)–(c). We will show below that the (K 2 1) 3 K matrix

T, the transpose of that is defined in section 2a,C C
satisfies the three conditions. Then from (5) and (7), the
spherical simplex ETKF initial perturbations are

21/2 Ta fY 5 X C(G 1 I) C . (C1)

First we prove T satisfies condition (a), that is,C
T · 1 5 0. Assume we have K forecast perturbationsC

defined as in (1). From (1),
fZ 1 5 0, (C2)

where Z f 5 X f / . Now, premultiply (C2) byÏK
(HZ f )TR21H, where as in Bishop et al. (2001) and Wang
and Bishop (2003), H is the observation operator and
R is the observation error covariance matrix, then

T 21f f(HZ ) R HZ 1 5 0. (C3)

Perform eigenvector decomposition on (HZ f )TR21HZ f ,
then we have

TCGC · 1 5 0, (C4)

where as defined in Bishop et al. (2001) and Wang and
Bishop (2003) C and G are the eigenvector and eigen-
value matrices of (HZ f )TR21HZ f . Both C and G are K
3 K matrices. In this discussion and throughtout this
paper, assume that the eigenvectors and corresponding
eigenvalues are organized from left to right in order of
decreasing eigenvalues. Note that the lack of linear in-
dependence of the columns of Z f implied by (C2) mean
that the smallest eigenvalue in G is equal to zero. Define
a new diagonal matrix from G by setting the lastĜ
eigenvalue in G to one. Then premultiply (C4) by

21CT. We have 21CT · CGCT · 1 5 21GCT · 1 5 0.ˆ ˆ ˆG G G
Thus,

TC · 1 5 0, (C5)

where , as defined in section 2a, a K 3 (K 2 1) matrix,C
contains the first K 2 1 columns of C. So far, we have
shown that T satisfies condition (a).C
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FIG. C1. Illustration of constructing spherical simplex points in (a)
one dimension and (b) two dimensions.

Because columns of are eigenvectors ofC
(HZ f )TR21HZ f , it is easy to verify that

T T T TC (C ) 5 C C 5 I. (C6)

So condition (b) is also satisfied by T.C
Because the last eigenvalue in G is equal to zero and

because each column of C is of unit length, the elements
in the last column of C are equal to 1/ . Using thisÏK
fact and the fact that CCT 5 I, one may show that

1
T T T T[(C ) C ] 5 (CC ) 5 1 2 , i 5 1, . . . , K, (C7)ii ii K

that is, the diagonal elements of T are all equal toCC
each other and thus each column of T has equal mag-C
nitude. So T also satisfies condition (c). Thus (C5),C
(C6), and (C7) imply that T, which is the first (K 2C
1) rows of CT, satisfies all three requirements.

b. Solution 2C1

Another solution to U is from purely geometric con-
siderations to satisfy the three conditions. It is obtained
by first considering the problem of choosing a set of
points that capture the three requirements in a single
dimension and then extend the set to two dimensions,
three dimensions, and so on. The matrix U is then in
the format as

 u u 0 0 · · · 011 12 u u u 0 · · · 021 22 23 , (C8) 
_ _ _ _ _ _ 

u u u u · · · u(K21)1 (K21)2 (K21)3 (K21)4 (K21)K 

where uij is the jth point in the K sigma points for the
ith dimension, e i. First choose a set of points u11 5 (x1)
and u12 5 (x2) to satisfy the three requirements in a
single direction, e1, then x1 and x2 need to satisfy

x 1 x 5 0, (C9)1 2

2 2x 1 x 5 1, (C10)1 2

2 2x 5 x . (C11)1 2

So, we choose x1 5 21/ and x2 5 1/ . To extendÏ2 Ï2
the set to two dimensions, points u11 and u12 are extended
in the direction of e2 by 2x3, that is, the extended points
are (x1, 2x3)T and (x2, 2x3)T. A new point is added at
(0, s3x3)T (see Fig. C1). This extension ensures that the
mean and covariance constraints are maintained in the
e1 direction. Also there is no correlation between e1 and
e2. The mean and covariance constraints in the e2 di-
rection are

2x 2 x 1 s x 5 0, (C12)3 3 3 3

2 2 2x 1 x 1 (s x ) 5 1. (C13)3 3 3 3

C1 J. Purser at NCEP once independently derived a spherical sim-
plex solution similar to (C15) but never published.

So, we choose s3 5 2 and x3 5 1/ . To satisfy theÏ6
equal-distance constraint,

2 2 2x 1 x 5 (s x ) .1 3 3 3 (C14)

By substituting x1, x3, and s3 into (C14), it is easy to
verify that (C14) is satisfied. So the three points in two
dimensions are (21/ , 21/ )T, (1/ , 21/ )T,Ï2 Ï6 Ï2 Ï6
and (0, 2/ )T. Similarly, we can extend the set to threeÏ6
dimensions by extending the above three points to the
direction e3 by 2x4 and a new point is added as (0, 0,
s4x4)T. To satisfy the mean and covariance constraints
in e3, we choose s4 5 3 and x4 5 1/ . This solutionÏ12
also satisfies the equal-distance constraint. Apply the
same procedures to extend to the (K 2 1) dimensions.
The solution U in the format of (C8) is
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 21 1
0 0 0 · · · · · · 0

Ï2 Ï2

21 21 2
0 0 · · · · · · 0

Ï6 Ï6 Ï6

21 21 21 3
0 · · · · · · 0 Ï12 Ï12 Ï12 Ï12

. (C15) 
_ _ _ _ _

21 21 j
· · · · · · · · · 0 0

Ïj( j 1 1) Ïj( j 1 1) Ïj( j 1 1)

_ _ _ _ _ _ _

21 21 K 2 1 · · · · · · · · · · · · · · ·
Ï(K 2 1)K Ï(K 2 1)K Ï(K 2 1)K 
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